Skip to main content

Using an evolutionary #epidemiological #model of #pandemics to estimate the #infection #fatality ratio for #humans infected with avian #influenza viruses

 


Abstract

The risk of highly pathogenic avian influenza infection to humans is challenging to estimate because many human avian influenza virus (AIV) infections are undetected as they may be asymptomatic, symptomatic but not tested, and as contact tracing is difficult because human-to-human spread is rare. We derive equations that consider the evolutionary mechanisms that give rise to pandemics and are parameterized to be consistent with records of past pandemics. We estimate that thousands of human AIV infections occur worldwide in an average year and estimate the infection fatality ratio as 32 deaths per 10,000 infections (95% confidence interval: [9.6, 75]). We estimate that preventing 20% of animal-to-human influenza spillovers annually would delay pandemic emergence by an average of 9.4 years. There is a high level of uncertainty in our estimates due to the few records of past pandemics, but even so this infection fatality ratio is comparable to SARS-CoV-2 during the recent pandemic and is higher than seasonal human influenza. Preventing human infections with AIV is necessary given the high risk of severe outcomes to individuals and to reduce the risk of pandemics occurring in the future.


Competing Interest Statement

The authors have declared no competing interest.


Funding Statement

AH was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGPIN 023-05905) and a Catalyst Grant: Avian Influenza OneHealth Research, Enhanced tracking of the circulation of and risk from highly pathogenic avian influenza viruses at the human-wildlife interface from the Canadian Institutes of Health Research. JM, ML, and AH were support by an Atlantic Canada Research in the Mathematical Sciences Collaborative Research Group award.

Source: 


Link: https://www.medrxiv.org/content/10.64898/2026.01.21.26344526v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...