Skip to main content

Primary #bovine embryonic #fibroblasts support seasonal #influenza A virus #infection and demonstrate variable #fitness of #HPAI #H5N1

Abstract

The emergence of highly pathogenic avian influenza (HPAI) H5N1 (clade 2.3.4.4b, genotype B3.13) in dairy cattle presents substantial challenges to the agricultural sector and public health. Mechanistic studies of infection and transmission in cattle have proven difficult due to animal handling restrictions as well as limited availability of established cell culture models. Primary Bovine Embryonic Fibroblasts (BeEFs) were collected from a Montana cow and are investigated here as a model to study influenza A virus (IAV) infection dynamics. We compared sialylation profiles, infectious virus production, viral replication, and plaque morphology in both BeEFs and chicken DF-1 cells following infection with the bovine HPAI H5N1 and an earlier 2.3.4.4b genotype (B1.1) isolated in 2022. The data presented here show increased viral fitness of the bovine origin HPAI H5N1 strains across multiple species and bovine susceptibility to human seasonal IAV. This study highlights the ability of BeEFs to serve as a model for studying IAV infections in bovine hosts.


Competing Interest Statement

The authors have declared no competing interest.

Funder Information Declared

United States Department of Agriculture, https://ror.org/01na82s61, 35208-11567

Montana Agricultural Experiment Station (MAES), MONB00443

HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), R21 AI178432-01, N7593021C00045

HHS | NIH | National Institute of General Medical Sciences (NIGMS), P20GM12549

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.07.26.666677v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____