Skip to main content

Continuous #evolution of #Eurasian #avian-like #H1N1 swine #influenza viruses with pdm/09-derived internal #genes enhances #pathogenicity in mice

 


ABSTRACT

Swine influenza A virus (swIAV) is an important zoonotic pathogen with the potential to cause human influenza pandemics. Swine are considered “mixing vessels” for generating novel reassortant influenza A viruses. In 2009, a swine-origin reassortant virus (2009 pandemic H1N1, pdm/09 H1N1) spilled over to humans, causing a global influenza pandemic. This virus soon spread back into swine herds and reassorted with the circulating swIAVs. We previously reported that the genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 virus, which bore pdm/09- and triple reassortant (TR)-derived internal genes, had been predominant in swine populations of China since 2016, posing a threat to both the swine industry and public health. Here, our ongoing surveillance confirmed that G4 EA H1N1 viruses remained the predominant swIAVs in China from 2019 to 2023 and had reassorted with the co-circulating swIAVs, such as the H3N2 virus, to generate novel reassortant EA H1N2 viruses. Genetic analyses revealed that the pdm/09-derived internal genes of G4 EA H1N1 viruses originated from reassortments between pdm/09 H1N1 and EA H1N1 viruses in 2009–2010 and underwent independent and continuous evolution in the swine host, exhibiting higher evolutionary rates than those of the pdm/09 H1N1 virus circulating in humans. The accelerated evolution of internal genes enhanced the polymerase activity of G4 EA H1N1 viruses in mammalian cells, resulting in increased viral replication and pathogenicity in mice. This study provides evidence for swine in promoting the genetic evolution of influenza A virus and highlights the need for increased attention to novel reassortant viruses in swine.


IMPORTANCE

The emergence of pdm/09 H1N1 virus highlights the role of swine influenza A viruses (swIAVs) in generating novel influenza viruses with pandemic potential. Since 2009, the pdm/09 H1N1 virus has been frequently transmitted to swine and reassorted with the circulating swIAVs, generating many new reassortant viruses bearing pdm/09-derived genes globally. The G4 EA H1N1 viruses, which bore pdm/09-derived internal genes and acquired increased human infectivity, remained the predominant swIAVs in China from 2019 to 2023 and reassorted with the co-circulating swIAVs to generate novel subtype viruses. The internal genes of G4 EA H1N1 viruses originated from the human pdm/09 H1N1 viruses during 2009–2010 and exhibited higher evolutionary rates and greater genetic diversity than those in the human host. This has contributed to increased viral adaptation and pathogenicity in mammals. Therefore, sustained surveillance and immunization efforts are essential to control emerging reassortant swIAVs and protect public health.

Source: Journal of Virology, https://journals.asm.org/doi/10.1128/jvi.00430-25

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...