Skip to main content

An evolutionary approach to identify #mammalian adaptive #mutations in the avian #influenza #polymerase complex

 


Abstract

Avian influenza viruses (AIVs) are a global public health risk; human infection is typically associated with high mortality. While the relationship between several mammalian adaptive mutations and host factors have been described, it is unknown whether additional uncharacterised mutations lead to adaptation. Here, we combine phylogenetic analysis and complementary experimental methods to quantify the impact of novel mutations that emerge at the avian-mammal interface. We constructed phylogenetic trees of mammalian and avian influenza sequences for the polymerase (PA, PB1, PB2) and nucleoprotein (NP) segments and identified potential avian to mammal spillover events. We found >6500 mutations across the polymerase and NP, including known signatures of mammalian adaptation such as PB2 E627K and D701N which occurred independently in mammals 143 and 56 times respectively. We selected 95 mutations which were mostly undescribed and emerged independently multiple times in a range of species and subtypes. Using a minigenome assay in an avian H5N1 backbone to measure the effect of these mutations in human cells we identified PA P28S, NP I425V and G485R as novel mutations leading to polymerase adaptation. In addition, to determine the mechanism of adaptive mutations, we measured polymerase activity in cells lacking a key host factor, ANP32, and cells overexpressing host restriction factors MxA and BTN3A3. Our combined approach revealed novel mammalian adaptive mutations and demonstrated the benefit of combining phylogenetic and molecular approaches in validating novel adaptive mutations.


Competing Interest Statement

The authors have declared no competing interest.


Funder Information Declared

Royal Society, https://ror.org/03wnrjx87, 231225

Academy of Medical Sciences, https://ror.org/00c489v88, Springboard Grant 1049

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.10.27.684835v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...