Skip to main content

#Vaccine-induced #antigenic #drift of a #human-origin #H3N2 #Influenza A virus in swine alters glycan binding and sialic acid avidity

 


Abstract

Interspecies transmission of human influenza A viruses (FLUAV) to swine occurs frequently, yet the molecular factors driving adaptation remain poorly understood. Here we investigated how vaccine-induced immunity shapes the evolution of a human-origin H3N2 virus in pigs using an in vivo sustained transmission model. Pigs (seeders) were vaccinated with a commercial inactivated swine vaccine and then infected with an antigenically distinct FLUAV containing human-origin HA/NA. Contact pigs were introduced two days later. After 3 days, seeder pigs were removed, and new contacts introduced. This was repeated for a total of 4 contacts. Sequencing of nasal swab samples showed the emergence of mutations clustered near the HA receptor binding site, enabling immune escape and abolishing binding to N-glycolylneuraminic acid. Mutant viruses recognized α2,6-sialosides with 3 N-acetyllactosamine repeats, which are rare in swine lungs, while the parental virus bound structures with a minimum of 2 repeats. Adaptative HA mutations enhanced avidity for α2,6-linked sialic acid, likely compensating for the low abundance of extended glycans. Notably, residues outside the canonical HA binding pocket contribute to glycan binding, suggesting a trade-off between receptor breadth and avidity. These findings show that non-neutralizing immunity promotes viral adaptation by fine-tuning receptor engagement and immune evasion.


Competing Interest Statement

The authors have declared no competing interest.

Source: 


Link: https://www.biorxiv.org/content/10.64898/2025.12.10.693614v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...