Skip to main content

E627V #mutation in #PB2 protein promotes the #mammalian #adaptation of novel #H10N3 avian #influenza virus

Abstract

Since 2021, the novel H10N3 has caused four cases of human infection in China, the most recent of which occurred in December 2024, posing a potential threat to public health. Our previous studies indicated that several avian H10N3 strains are highly pathogenic in mice and can be transmitted between mammals via respiratory droplets without prior adaptation. By analyzing the genome sequence, we found that these H10N3 viruses carry the PB2-E627V mutation, which is becoming increasingly common in several subtypes of avian influenza viruses (AIV); however, its mechanism in mammalian adaptation remains unclear. Using a reverse genetics system, we investigated the role of PB2-E627V in the adaptation of H10N3 to mammals and poultry. Our findings demonstrate that the PB2-E627V mutation is critical for the high pathogenicity of novel H10N3 in mice and its ability to be transmitted through the air among mammals. Additionally, we found that the role of PB2-627 V in promoting AIV adaptation to mammals is comparable to that of PB2-627 K. More importantly, PB2-627 V appears to be equally suited to long-term persistence in poultry. Therefore, using PB2-627 V as a novel molecular marker to assess the epidemic potential of AIV is of great significance for preventing possible influenza pandemics in the future.

Source: Veterinary Research, https://veterinaryresearch.biomedcentral.com/articles/10.1186/s13567-025-01534-8

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____