Skip to main content

Genomic-based #biosurveillance for avian #influenza: whole genome sequencing from wild #mallards sampled during autumn migration in 2022–23 reveals a high co-infection rate on migration stopover site in #Georgia

 


Abstract

The Caucasus region, including Georgia, is an important intersection for migratory waterbirds, offering potential for avian influenza virus (AIV) transmission between populations from different geographic areas. In 2022 and 2023, wild ducks were sampled during autumn migration events in Georgia to study the genetic relationships and molecular characteristics of influenza strains. Sequencing and phylogenetic analysis were used to compare the sampled strains to reference sequences from Africa, Asia, and Europe, allowing assessment of genetic relationships and virus transmission between migratory birds. Protein language modeling identified potential co-infections. Of 225 duck samples, 128 tested positive for the influenza M gene. 55 influenza-positive samples underwent whole-genome sequencing, revealing significant diversity. Analysis of the hemagglutinin (HA) segment showed notable differences among subtypes. Most samples were H6N1 and H6N6, but co-infections with combinations like H6H3, N8N1, N6H9, N2N6, and H9H6/N1N2 were also identified. These findings demonstrate the high variability of influenza viruses in migratory waterbirds in Georgia, including a notable rate of co-infections. Some samples exhibited uncommon genetic characteristics compared to other strains from the same year, suggesting Georgia’s role as a mixing vessel for influenza viruses. This facilitates reassortment during co-infections and contributes to the genetic diversity observed across flyways.

Source: 


Link: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2026.1735728/full

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...