Skip to main content

Susceptibility of #bovine respiratory and mammary epithelial #cells to avian and #mammalian derived clade 2.3.4.4b #H5N1 highly pathogenic avian #influenza viruses

Abstract

Zoonotic transmission of avian influenza viruses into mammals is relatively rare due to anatomical differences in the respiratory tract between species. Recently, clade 2.3.4.4b highly pathogenic H5N1 avian influenza viruses were detected circulating in North American cattle. Sporadic transmission between cattle, humans, and other animals proximal to cattle or after consuming products from infected cattle has occurred, but thus far there is no evidence of human-to-human transmission. However, the virus has the potential to adapt to the mammalian respiratory tract with every transmission event that occurs, making it crucial to understand cellular and species tropism of the H5N1 2.3.4.4b viruses. We compared viral kinetics of clade 2.3.4.4b viruses isolated from birds and mammals in respiratory epithelial cells derived from cattle, human, swine, and ferret. We found that avian derived viruses could replicate in swine cells only, yet mammalian derived strains could replicate efficiently in all tracheal and nasal epithelial cells tested. Interestingly, only bovine mammary epithelial cells (MEC) and swine respiratory epithelial cells were permissive to both avian and mammalian derived strains, possibly due to increased sialic acid expression on bovine MEC compared to bovine tracheal epithelial cells (TEC). However, sialic acid expression differed between dairy and beef cows: TEC derived from a dairy cow had increased expression of alpha2,6;2,3 sialic acid receptors compared to TEC from a beef-dairy cow cross. This study highlights the ability of clade 2.3.4.4b H5N1 viruses derived from mammals but not wild birds to infect the respiratory epithelium of other mammalian hosts.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.01.09.632235v1?rss=1

_____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____