Skip to main content

A #Human #H5N1 #Influenza Virus Expressing Bioluminescence for Evaluating Viral #Infection and Identifying #Therapeutic Interventions

Abstract

A multistate outbreak of highly pathogenic avian influenza virus (HPAIV) H5N1 in dairy cows was first reported on March 25, 2024, in the United States (US), marking the first discovery of HPAIV H5N1 in cattle. Soon after, a dairy worker on an affected dairy farm became the first human case linked directly to this outbreak. Studies with influenza A virus (IAV) require secondary methods to detect the virus in infected cells or animal models of infection. We modified the non-structural (NS) genome segment of the human A/Texas/37/2024 (HPhTX) H5N1 virus to create a recombinant virus expressing nanoluciferase (HPhTX NSs-Nluc), enabling the tracking of virus in cultured cells and mice via in vitro, ex vivo, and in vivo imaging systems (IVIS). In vitro, HPhTX NSs-Nluc showed growth and plaque characteristics similar to its wild-type (WT) counterpart. In vivo, HPhTX NSs-Nluc allowed tracking viral infection in the entire animals and in the organs of infected animals using in vivo and ex vivo IVIS, respectively. Importantly, the morbidity, mortality, and replication titers of HPhTX NSs-Nluc were comparable to those of the WT HPhTX. In vitro, HPhTX NSs-Nluc was inhibited by Baloxavir acid (BXA) to levels observed with WT HPhTX. We also demonstrate the feasibility of using HPhTX NSs-Nluc to evaluate the antiviral activity of BXA in vivo. Our findings support that HPhTX NSs-Nluc represents an excellent tool for tracking viral infections, including the identification of prophylactics or therapeutics for the treatment of the HPAIV H5N1 responsible of the outbreak in dairy cows.

Source: BioRxIV, https://www.biorxiv.org/content/10.1101/2025.03.28.646035v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...