Skip to main content

#Geographic and #age #variations in mutational processes in #colorectal #cancer

Abstract

Colorectal cancer incidence rates vary geographically and have changed over time1. Notably, in the past two decades, the incidence of early-onset colorectal cancer, affecting individuals under the age of 50 years, has doubled in many countries2-5. The reasons for this increase are unknown. Here, we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown etiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia, and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin6,7, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals diagnosed before age 40 than in those over 70, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that early-life mutagenic exposure to colibactin-producing bacteria may contribute to the rising incidence of early-onset colorectal cancer.

Source: Nature, https://www.nature.com/articles/s41586-025-09025-8

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...