Skip to main content

Improving #Influenza #Nomenclature Based on #Transmission Dynamics

Abstract

Influenza A viruses (IAVs) evolve rapidly, exhibit zoonotic potential, and frequently adapt to new hosts, often establishing long-term reservoirs. Despite advancements in genetic sequencing and phylogenetic classification, current influenza nomenclature systems remain static, failing to capture evolving epidemiological patterns. This rigidity has led to delays or misinterpretations in public health responses, economic disruptions, and confusion in scientific communication. The existing nomenclature does not adequately reflect real-time transmission dynamics or host adaptations, limiting its usefulness for public health management. The 2009 H1N1 pandemic exemplified these limitations, as it was mischaracterized as “swine flu” despite sustained human-to-human transmission and no direct pig-to-human transmission reported. This review proposes a real-time, transmission-informed nomenclature system that prioritizes host adaptation and sustained transmissibility (R0 > 1) to align influenza classification with epidemiological realities and risk management. Through case studies of H1N1pdm09, H5N1, and H7N9, alongside a historical overview of influenza naming, we demonstrate the advantages of integrating transmission dynamics into naming conventions. Adopting a real-time, transmission-informed approach will improve pandemic preparedness, strengthen global surveillance, and enhance influenza classification for scientists, policymakers, and public health agencies.

Source: Viruses, https://www.mdpi.com/1999-4915/17/5/633

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____