Skip to main content

Altered germinal center responses in mice vaccinated with highly pathogenic avian #influenza A(#H5N1) virus

Highlights

• Different immune responses in mice vaccinated with influenza A(H5N1) than with other subtypes.

• Highly pathogenic avian influenza A(H5N1)-vaccinated mice had altered germinal center responses.

• A(H5N1)-vaccinated mice had fewer dLN germinal centers and more extrafollicular B cells.

• A(H5N1)-vaccinated mice had more dLN follicular helper and regulatory T cells.

• Our study represents a timely assessment of A(H5N1) risk to human health.


Abstract

Highly pathogenic avian influenza (HPAI) H5N1 virus vaccines typically yield lower neutralizing antibody titers in animals than influenza A virus (IAV) vaccines derived from other viral subtypes. To understand these differences, we compared the cellular immune responses in the draining lymph nodes (dLNs) of mice vaccinated with an inactivated whole H5N1 vaccine to those in mice vaccinated with seasonal H1N1pdm09, H7N9, or H9N2 IAV vaccines. H5N1-vaccinated mice exhibited reduced serum neutralizing antibody titers, despite the hemagglutinin-binding immunoglobulin production being similar to that with other IAV vaccines. Although bulk RNA sequencing showed no differences in B-cell populations after H5N1 and H1N1pdm09 vaccination, H5N1 vaccination resulted in fewer, but larger, dLN germinal centers and significantly more extrafollicular B cells, which are known to produce lower neutralizing antibody titers. Furthermore, H5N1-vaccinated mice had significantly more follicular helper and regulatory T cells. Therefore, differences in neutralizing antibody production in mice after IAV vaccination correlate with subtype-dependent germinal center reactions in the dLNs.

Source: Vaccine, https://www.sciencedirect.com/science/article/pii/S0264410X25006085?via%3Dihub

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...