Skip to main content

Unique Phenomenon of #H5 Highly Pathogenic Avian #Influenza Virus in #China: Co-circulation of Clade 2.3.4.4b #H5N1 and #H5N6 results in diversity of H5 Virus

Abstract

Recently, Clade 2.3.4.4b H5N1 virus has been widely prevalent globally. Although no outbreaks of Avian Influenza have occurred in poultry in China recently, Clade 2.3.4.4b H5 virus can still be isolated from wild birds, live poultry markets and environment, indicating the ongoing co-circulation of H5N1 and H5N6 viruses. In this study, phylogenetic analysis of global Clade 2.3.4.4b viruses and 20 laboratory-isolated H5 strains revealed that Chinese H5N1 and H5N6 viruses since 2021 cluster into two distinct groups, G-I and G-II. Bayesian phylodynamic analysis reveals that G-I H5N6 virus has become an endemic virus in China. In contrast, G-II H5N1 virus, with South China as its main epicentre, has been disseminated in China and its surrounding countries, with its transmission more reliant on the connections of wild birds and waterfowl. Reassortment analysis indicates that since 2023, Clade 2.3.4.4b H5 viruses isolated in China have formed seven genotypes. The genome of H5 viruses has undergone changes compared to those previously prevalent in China. Animal experiments have shown that prevalent H5 viruses exhibit significant lethality in chickens. Additionally, certain H5 viruses have shown the capability of systemic replication in mice. It is noted that H5N6 viruses with HA genes derived from H5N1 viruses demonstrate stronger virulence and pathogenicity in chickens and mice compared to G-I H5N6 viruses. Our study indicates that the co-circulation of H5N1 and H5N6 viruses in China has increased the diversity of H5 viruses, making continuous surveillance of H5 viruses essential.

Source: Emerging Microbes and Infections, https://www.tandfonline.com/doi/full/10.1080/22221751.2025.2502005

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...