Skip to main content

Wastewater surveillance for avian influenza: national patterns of detection and relationship with reported outbreaks and infections

Abstract

Background

Influenza A virus (IAV) is a major cause of morbidity and mortality globally, causing seasonal influenza in humans and infecting birds and some mammals. In 2024, IAV H5N1 highly pathogenic avian influenza (HPAI) in the United States moved into cattle. While the outbreak is currently of low risk to the general public, there is an urgent need to monitor the disease and prevent spread. 

Methods

We conducted a nationwide study evaluating the relationship between H5 hemagglutinin gene RNA concentrations in wastewater and reported outbreaks of IAV H5N1 in animals and humans. We utilized an H5-specific droplet digital RT-PCR test to quantify H5 RNA in wastewater in 40 states across the United States, and 1) examined the temporal association between outbreaks and wastewater detections and 2) utilized linear mixed models (LMM) to determine the relationship between measurements in wastewater and outbreak-related factors in the local area. 

Results

We find that there is a significant temporal association between wastewater H5 detections and the incidence of outbreaks in poultry and wild birds, but not in cattle or with human infections. However outbreaks tended to occur at the same time across populations - wild bird detections were also associated with H5N1 in herds, poultry, and humans. Utilizing a LMM, we find that for individual sites, there is a relationship between H5 measurements in wastewater and both poultry outbreaks and the presence of dairy industry locally, but that there was either no relationship or a negative relationship with H5 measurements and either combined systems that accept storm water or those with detection of H5 in wild birds. 

Conclusions

The study highlights how wastewater monitoring can supplement traditional surveillance, providing vital data that reflects public health threats. The findings underscore the potential of scaled wastewater surveillance as a proactive tool in monitoring and managing future outbreaks.

Source: MedRxIV, https://www.medrxiv.org/content/10.1101/2025.05.06.25327100v1

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

Stability of #influenza viruses in the #milk of #cows and #sheep

Abstract In late 2023, H5N1 high pathogenicity avian influenza (HPAIV) started circulating in dairy cattle in the USA . High viral titres were detected in milk from infected cows , raising concerns about onwards human infections . Although pasteurisation was shown to effectively inactivate influenza viruses in milk, unpasteurised milk still poses a risk of infection, both from occupational exposure in dairies and from the consumption of raw milk. We therefore assessed how long influenza viruses could remain infectious for in milk without heat inactivation. We examined the stability of a panel of influenza viruses in milk , including a contemporary H5N1 HPAIV and a variety of other influenza A and D viruses. We incubated viruses in cows' milk under laboratory conditions : at room temperature to simulate exposure in dairies and at 4°C to simulate exposure to refrigerated raw milk. Following an isolated report of H5N1 viral RNA being detected in milk from a sheep in the UK , we also c...

#Evidence of #Viremia in Dairy #Cows Naturally Infected with #Influenza A {#H5N1} Virus, #California, #USA

Abstract We confirmed influenza A virus (IAV) by PCR in serum from 18 cows on 3 affected dairy farms in California, USA . Our findings indicate the presence of viremia and might help explain IAV transmission dynamics and shedding patterns in cows. An understanding of those dynamics could enable development of IAV mitigation strategies. Source: US Centers for Disease Control and Prevention,  https://wwwnc.cdc.gov/eid/article/31/7/25-0134_article ____