Skip to main content

Immediate #PB2-E627K amino acid #substitution after single #infection of highly pathogenic avian #influenza #H5N1 clade 2.3.4.4b in mice

Abstract

The highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b has rapidly disseminated globally, with mammalian infections reported in multiple species. Recent evidence of mammal-to-mammal transmission has heightened concerns about the virus’s potential adaptation to mammals. The polymerase basic 2 (PB2) protein E627K mutation appears to be of key importance for mammalian adaptation. We isolated an HPAI H5N1 clade 2.3.4.4b virus from wild birds in Korea with 96% E and 4% K at amino acid position 627 of PB2. To investigate the genomic characteristics of this clade regarding mammalian adaptation, we studied the replication and transmission of the H5N1 virus in mice. Two experiments with different challenge-to-contact ratios were conducted to assess transmission dynamics and mutation development. In experiment 1, a 4:1 challenge-to-contact ratio resulted in 100% transmission among direct-contact mice, with all mice succumbing to the infection. In experiment 2, a 1:1 ratio yielded 50% transmission, with all challenged mice also succumbing. High viral loads were observed in the lungs and brains in both experiments, with viral titers increasing over time. Notably, the PB2-E627K variant, initially present at 4% in the virus stock, was selected and reached near-fixation (~ 100%) in the lungs and brains by 6 days post-challenge and was subsequently transmitted. No other mammalian-adaptive mutations were identified, emphasizing the pivotal role of PB2-E627K in early stages of mammalian adaptation. These findings highlight the need for continuous genomic monitoring to detect mammalian adaptation markers and assess interspecies transmission risks.

Source: Virology Journal, https://virologyj.biomedcentral.com/articles/10.1186/s12985-025-02811-w

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...