Skip to main content

#Phage-induced #protection against lethal #bacterial #reinfection

Significance

In 2021, antimicrobial-resistant bacteria were responsible for 1.14 million deaths and associated with 4.71 million deaths globally. Patients who experience sepsis often face a higher risk of reinfections and hospital readmissions. To combat this crisis, bacteriophages—viruses that infect and kill bacteria—are regaining interest as a potential solution. Here, we show that mice infected with extraintestinal pathogenic Escherichia coli and treated with phage HP3 not only recover from the initial infection but also gain protection against a secondary challenge with the same bacterial strain. The protective effect is dependent on the bacteriolytic action of the phage. These findings shift phages from being solely therapeutic antimicrobials to dual-action immunotherapeutics capable of both clearing and preventing bacterial infections.


Abstract

Bacteriophages, or phages, are viruses that target and infect bacteria. Due to a worldwide rise in antimicrobial resistance (AMR), phages have been proposed as a promising alternative to antibiotics for the treatment of resistant bacterial infections. Up to this point in history, phage use in preclinical animal studies, clinical trials, and emergency-use compassionate care cases has centered around the original observation from 1915 showing phage as lytic agent, and thus a treatment that kills bacteria. Here, we describe an activity associated with phage therapy that extends beyond lytic activity that results in long-term protection against reinfection. This activity is potent, providing almost complete protection against a second lethal infection for animals treated with phage therapy. The activity also reduced infection burden an astounding billion-fold over the control. Reinfection protection requires phage lytic killing of its target bacterium but is independent of additional phage therapy. The effect is not driven by phage alone, lingering phage resistors, or a sublethal inoculum. In vitro phage-lysed bacteria provide partial protection, suggesting a combination of phage-induced lytic activity and immune stimulation by phage treatment is responsible for the effect. These observations imply certain phages may induce host adaptive responses following the lysis of the infecting bacteria. This work suggests phage therapy may contain a dual-action effect, an initial treatment efficacy followed by a long-term protection against reoccurring infection, a therapeutic-vaccination mechanism of action.

Source: Proceedings of the National Academy of Sciences of the United States of America, https://www.pnas.org/doi/abs/10.1073/pnas.2423286122?af=R

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...