Skip to main content

The combinatorial activities of #oseltamivir and #molnupiravir against #influenza virus infections in vitro and in vivo

Highlights

• Mol shows greater antiviral effects against IAV and IBV in cell cultures.

• Mol and Ose together showed a synergistic effect against IAV.

• In mice, Mol alone or with Ose reduced lung injury and viral load.


Abstract

Oseltamivir, a neuraminidase inhibitor, is widely used in the clinic for treating influenza virus infections. However, suboptimal efficacy and risk of drug resistance development remain major challenges. Molnupiravir, a ribonucleoside analog, was originally developed to treat influenza, but was repurposed and first approved for treating COVID-19 in 2021. Considering their complementary mode-of-actions, this study aimed to investigate the combinatorial activities of oseltamivir and molnupiravir against influenza virus infections. In cell culture models, we found that β-d-N4-hydroxycytidine (NHC), the active form of molnupiravir, exerted more potent antiviral activities against influenza A and B viruses, when compared to oseltamivir treatment. Combination of NHC with oseltamivir exhibited a synergistic antiviral effect against the influenza A/Puerto Rico/8/34 H1N1 strain, but not the influenza B/Washington/02/2019 strain. In a mouse model infected with the PR/8 virus strain, treatment with molnupiravir alone or in combination with oseltamivir effectively attenuated lung injury and reduced viral load in the tissue. Taken together, molnupiravir can be explored in combination with oseltamivir to treat influenza, especially for patients infected with the oseltamivir-resistant strains, whereas further research is warranted.

Source: Virology, https://www.sciencedirect.com/science/article/abs/pii/S0042682225002557?via%3Dihub

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...