Skip to main content

#Global burden of lower respiratory #infections and aetiologies, 1990–2023: a systematic analysis for the Global Burden of Disease Study 2023

 


Summary

Background

Lower respiratory infections (LRIs) remain the world's leading infectious cause of death. This analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 provides global, regional, and national estimates of LRI incidence, mortality, and disability-adjusted life-years (DALYs), with attribution to 26 pathogens, including 11 newly modelled pathogens, across 204 countries and territories from 1990 to 2023. With new data and revised modelling techniques, these estimates serve as an update and expansion to GBD 2021. Through these estimates, we also aimed to assess progress towards the 2025 Global Action Plan for the Prevention and Control of Pneumonia and Diarrhoea (GAPPD) target for pneumonia mortality in children younger than 5 years.

Methods

Mortality from LRIs, defined as physician-diagnosed pneumonia or bronchiolitis, was estimated using the Cause of Death Ensemble model with data from vital registration, verbal autopsy, surveillance, and minimally invasive tissue sampling. The Bayesian meta-regression tool DisMod-MR 2.1 was used to model overall morbidity due to LRIs. DALYs were calculated as the sum of years of life lost (YLLs) and years lived with disability (YLDs) for all locations, years, age groups, and sexes. We modelled pathogen-specific case-fatality ratios (CFRs) for each age group and location using splined binomial regression to create internally consistent estimates of incidence and mortality proportions attributable to viral, fungal, parasitic, and bacterial pathogens. Progress was assessed towards the GAPPD target of less than three deaths from pneumonia per 1000 livebirths, which is roughly equivalent to a mortality rate of less than 60 deaths per 100 000 children younger than 5 years.

Findings

In 2023, LRIs were responsible for 2·50 million (95% uncertainty interval [UI] 2·24–2·81) deaths and 98·7 million (87·7–112) DALYs, with children younger than 5 years and adults aged 70 years and older carrying the highest burden. LRI mortality in children younger than 5 years fell by 33·4% (10·4–47·4) since 2010, with a global mortality rate of 94·8 (75·6–116·4) per 100 000 person-years in 2023. Among adults aged 70 years and older, the burden remained substantial with only marginal declines since 2010. A mortality rate of less than 60 deaths per 100 000 for children younger than 5 years was met by 129 of the 204 modelled countries in 2023. At a super-regional level, sub-Saharan Africa had an aggregate mortality rate in children younger than 5 years (hereafter referred to as under-5 mortality rate) furthest from the GAPPD target. Streptococcus pneumoniae continued to account for the largest number of LRI deaths globally (634 000 [95% UI 565 000–721 000] deaths or 25·3% [24·5–26·1] of all LRI deaths), followed by Staphylococcus aureus (271 000 [243 000–298 000] deaths or 10·9% [10·3–11·3]), and Klebsiella pneumoniae (228 000 [204 000–261 000] deaths or 9·1% [8·8–9·5]). Among pathogens newly modelled in this study, non-tuberculous mycobacteria (responsible for 177 000 [95% UI 155 000–201 000] deaths) and Aspergillus spp (responsible for 67 800 [59 900–75 900] deaths) emerged as important contributors. Altogether, the 11 newly modelled pathogens accounted for approximately 22% of LRI deaths.

Interpretation

This comprehensive analysis underscores both the gains achieved through vaccination and the challenges that remain in controlling the LRI burden globally. Furthermore, it demonstrates persistent disparities in disease burden, with the highest mortality rates concentrated in countries in sub-Saharan Africa. Globally, as well as in these high-burden locations, the under-5 LRI mortality rate remains well above the GAPPD target. Progress towards this target requires equitable access to vaccines and preventive therapies—including newer interventions such as respiratory syncytial virus monoclonal antibodies—and health systems capable of early diagnosis and treatment. Expanding surveillance of emerging pathogens, strengthening adult immunisation programmes, and combating vaccine hesitancy are also crucial. As the global population ages, the dual challenge of sustaining gains in child survival while addressing the rising vulnerability in older adults will shape future pneumonia control strategies.

Funding

Gates Foundation.

Source: 


Link: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(25)00689-9/abstract?rss=yes

____

Comments

Popular posts from this blog

#Neuroinvasive #Oropouche virus in a patient with #HIV from extra-Amazonian #Brazil

{Excerpt} A novel reassortant Oropouche virus (OROV) lineage (with medium [M], large [L], and small [S] RNA segments : M1L2S2) has driven Brazil's largest and most geographically widespread OROV epidemic , expanding beyond the endemic Amazon basin to establish local transmission across multiple Brazilian states and other previously unaffected Latin American countries . The rapid spread of this lineage underscores its evolutionary potential and reinforces its significance as a public health threat .1 Similar to chikungunya and Zika viruses, expanding arboviruses can exhibit unexpected clinical and epidemiological shifts , including vertical transmissions , neuroinvasive effects, and potentially fatal outcomes.2–4 Although OROV typically causes self-limited febrile illness, accumulating clinical and experimental evidence suggests neurotropic potential .5 This Correspondence describes the first confirmed case of neuroinvasive OROV infection caused by the emergent M1L2S2 lineage in ext...

No evidence of immune #exhaustion after repeated #SARS-CoV-2 #vaccination in vulnerable and healthy populations

Abstract Frequent SARS-CoV-2 vaccination in vulnerable populations has raised concerns that this may contribute to T cell exhaustion , which could negatively affect the quality of immune protection. Herein, we examined the impact of repeated SARS-CoV-2 vaccination on T cell phenotypic and functional exhaustion in frail older adults in long-term care (n = 23), individuals on immunosuppressive drugs (n = 10), and healthy adults (n = 43), in Canada . Spike-specific CD4+ and CD8+ T cell levels did not decline in any cohort following repeated SARS-CoV-2 vaccination, nor did the expression of exhaustion markers on spike-specific or total T cells increase. T cell production of multiple cytokines (i.e. polyfunctionality) in response to the spike protein of SARS-CoV-2 did not decline in any cohort following repeated vaccination. None of the cohorts displayed elevated levels of terminally differentiated T cells following multiple SARS-CoV-2 vaccinations. Thus, repeated SARS-CoV-2 vaccination was...

Chimeric #hemagglutinin and #M2 #mRNA #vaccine for broad #influenza subtype protection

Abstract Since multiple and unpredicted influenza viruses cause seasonal epidemics and even high-risk pandemics , developing a universal influenza vaccine is essential to provide broad protection against various influenza subtypes. Combined with the mRNA lipid nanoparticle-encapsulated (mRNA-LNP) vaccine platform and chimeric immunogen strategy , we developed a novel cocktail mRNA vaccine encoding chimeric HAs (cH5/1-BV, cH7/3) and intact M2 (termed Fluaxe), which confers broad protection against major circulating IAVs and IBVs , as well as highly pathogenic avian influenza . Two-dose intramuscular immunization of Fluaxe in mice elicited cross-reactive neutralizing antibodies , T cell responses, and long-lived immunity, resulting in robust protection against multiple lethal influenza virus infections and severe acute lung injuries . In particular, intramuscular administration stimulated systemic immunity together with a prominent lung tropism of memory cells . Moreover, Fluaxe immuniza...